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This paper relates the differential entropy of a sufficiently nice probability density 
function p on Euclidean n-space to the problem of tiling n-space by the translates of a 
given compact symmetric convex set S with nonempty interior. The relationship 
occurs via the concept of the epsilon entropy of n-space under the norm induced by S, 
with probability induced byp. An expression is obtained for this entropy as E approaches 
0, which equals the differential entropy of p, plus n times the logarithm of 2/~, plus the 
logarithm of the reciprocal of the volume of S, plus a constant C(S) depending only 
on S, plus a term approaching zero with e. The constant C(S) is called the entropic 
packing constant of S; the main results of the paper concern this constant. It is shown 
that C(S) is between 0 and 1 ; furthermore, C(S) is zero if and only if translates of S 
tile all of n-space. 

KEY WORDS: Differential entropy; Tiling; Entropy; Close packing; Random coding; 
Convex sets; Epsilon entropy; Information-theoretic geometry. 

1. I N T R O D U C T I O N  

This  p a p e r  defines a c o n s t a n t  C(S) fo r  a c o m p a c t  c o n v e x  s y m m e t r i c  set S in E u c l i d i a n  

n-space  E '~ h a v i n g  n o n e m p t y  in ter ior ,  such  tha t  

o ~ c(s)  <~ 1 

such  tha t  C(S) is a c o n t i n u o u s  f u n c t i o n  o f  S in a na tu ra l  t o p o l o g y  on  the  space  o f  S, 
and  such  tha t  

C(S) = 0 

i f  a n d  on ly  i f  t rans la tes  o f  S tile E n, tha t  is, i f  a n d  on ly  i f  E ~ can  be cove red  by a u n i o n  

o f  t rans la tes  o f  S such  tha t  the  in t e r sec t ion  o f  any  two  such  t rans la tes  does  n o t  c o n t a i n  
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an open set. This constant C(S) is called the entropie packing of S, and is defined via 
the notion of the differential entropy of a sufficiently nice density function on E ". 
The differential entropy occurs as one term in an expression for the epsilon entropy 
of E ~ under the probability distribution induced by p, with metric defined by the norm 
induced by S. 

We will now define these terms. First we define the notion of the epsilon 
entropy H~(X) of a complete separable metric space X under a probability measure/x 
such that the open sets of  X are measurable; that is, we define the epsilon entropy of a 
probabilistic metric space. ~1,2~ The entropy is defined as the infimum (actually 
minimum) of the entropies of  all partitions of X by sets of  diameter at most E. The 
entropy of  a partition is defined as 

p~ log(1/p~) (1) 

where 

p ,  = ~(u3 

the probability of  the ith set of  the partition. 
Now let p be a density function on E ~. Then the differential entropy H(p) of 

the densityp is defined as 131 

f p(x) log[lip(x)] din(x) 

where dm(x) is Lebesgue measure on E ~. This integral is either finite or --0% since 

p log (l/p) ~< 1/e 

Finally, if S is a compact convex symmetric set in E ~ with nonempty interior, 
such that the origin O is its center of  symmetry, then the norm 

II "'" IIs 

on E '~ is defined as 

[1 x lls = min{A > O/x ~ AS} 

where AS is the set of  all As, s E S. Then E ~ is a complete normed linear space under 
II " ' "  I I s ,  and this norm is equivalent to the Euclidean one. 

We are interested in the probabilistic metric space X whose point set is E '~, 
whose metric is induced by [I"" 1Is, and whose probability measure d/x is defined by 

dt~ = p(x)  rim(x) 

and p >1 O, f pdm = 1. 
We want an expression for H,(X) valid as ~---0.  To do this, we need to assume 

that p is nice in a sense to be made precise. Let vx be the Euclidean volume of S. 
Then we prove that for all S and for a certain class o f p  not depending on S, we have 

H,(J0  = n log(2/e) + H(p) + log(I/v1) -I-, C(S) + o(1) (2) 
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as e --+ 0, where o(1) may depend on p and S. The constant C(S) occurring in this 
equation is the entropic packing constant of S; it satisfies, as we shall show, 

0 ~ C(S) ~ 1 

and furthermore C(S) = 0 if and only if translates of  S tile E". We also show that 
C(S) is a continuous function of S in a natural sense. The proof  that C(S) ~< 1 relies 
heavily on a random coding argument in Reference 2; except for this, our discussion 
here is reasonably self-contained. 

2. T H E  n-CUBE U N D E R  LEBESGUE MEASURE 

This section introduces the entropic packing constant C(S) in terms of partitions 
of  the n-cube by measurable sets of  diameter at most e under ['~ .-- []s. 

We need one more definition, that of  the Hausdorffmetric on the space of compact 
subsets of a given complete separable metric space (pp. 166-172 of Reference 4). 
For two closed sets A and B, define the Hausdorff  distance p between A and B as 

p(A, B )  = max{sup inf d(x, y), sup inf d(x, y ) }  
x~A yEB y~B XEA 

(3) 

The space R of compact subsets of  the complete separable metric space X with metric d 
is then itself a complete separable metric space with metric p, and R is compact 
under p if X is compact under d. We then have Theorem 1. 

T h e o r e m  1. Let il "'" '~]s be the norm on E ~ associated with a compact convex 
symmetric set in E" with nonempty interior. Let vl be the (Lebesgue) volume of S. 
I f  q / =  {Uj} is any partition of E ~ into sets of diameters -~<e (under [[ "'" ils), and J 
is the set of  integers j for which U~- lies wholly in the cube 

0 < x ~  < L ,  k =  1 ..... n (4) 

where x~ is the kth coordinate in E% then 

Z m(Uj) log 1 L ~ log ~J ~ >1 + c(s) + gl (5) 

where C(S) is a constant depending only on S, and gl(t) is a function depending only 
on S, such that g~(t) ~ 0 as t --~ 0 +. Also, there is an e-partition ~K" --= { V~} of the cube 
(4) with 

1 
- -  L ~ [log 

2" 

J 

where gz(t) is a function depending only on the metric, with gz(t) --~ 0 as t --+ 0 +. 
The constant C(S), the entropic packing constant, is at most 1, is nonnegative, 

and is zero if and only if translates of S tile E". Furthermore, C(S) is continuous in 
the Hausdorff metric on the space of compact subsets of  E". 
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Proof.  We shall need the following known result (Reference 5, Sec. 47), a 
consequence of  the Briin-Minkowski lemma: 

Let S be a compact convex set in Euclidean n-space with nonempty interior. 
Then the volume of S is at most the volume of [S + (--S)]/2, the symmetric convex 
set consisting of all (x  - - y ) / 2 ,  x,  y c S. Equality holds if and only if S itself is 
symmetric, i.e., if and only if S = --S. 

As a corollary to this result, we note that the given convex symmetric set S has 
Euclidean volume equal to or greater than that of  any set B in the space of diameter 
~<2, with equality if and only if B differs from S by a translation. To show this, 
we can assume that B is symmetric, since [B + (--B)]/2 is symmetric, has diameter at 
most 2, and at least as much volume as B. Now 

I l x l [ s  ~< l o x e S  

Hence, if B is symmetric, has diameter 2, and x,  y ~ B, then 

II x - y IIs ~< 2 

[] x /2  - -  y /2  IIs ~< 1 

x/2  - -  y /2  ~ S 

[8 + (-8)1/2 c s 
B C S  

as required. 
It  then follows that if B is a closed convex set in Euclidean n-space of ti "'" IIs 

diameter at most 1, and if B has volume close to the volume of S, then B itself is close 
to S. That  is, the volume of the symmetric difference between some translate of  B 
and S must be small. This result follows f rom the fact that the space of closed sets 
contained in some fixed sphere of  Euclidean n-space is compact  under the Hausdorff  
metric. This fact will be used later to prove that C(S) is continuous in the Hausdorff  
metric. 

Let X denote the probabilistic metric space consisting of the unit cube 

0 < x k < l ,  l ~ k < ~ n  

in E% under the metric induced by II "'" I I s ,  and Lebesgue measure as its probability 
distribution. We wish to consider 

Note that 

D(e) = H~(X) - -  log(2n/e"vl) (7) 

since, as we have seen, the maximum probability of  an e-set in X is the probability 
of  the set �89 

We claim that D(e) approaches a finite limit as e - +  0. First, for e sufficiently 
large, the diameter of  X is less than e, and H , ( X )  = 0. Hence for large e, D(e) < oe. 

D(E)/> 0, all r (8) 
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Now let q be a positive integer. We cut the n-cube into q" equal cubes of side 1/q. 
The small cubes with a uniform measure form probabilistic metric spaces X(~, 
1 ~< l ~< q~. Then (Reference 2, Sec. 5) 

H~/q(X) <~ ~ 1 H~/q(X(o ) + tog(q~) 
l=l qn 

= H,(X) § log(q ~) 

H~/q(X) -- log(2~q'~/e~vO ~ H~(X) -- log(2n/e'~v~) 

o r  

E 1 S O  that 
D(Ez) ~< lira inf D(E) + 3 

For q a positive integer and e~/q >~ E > Ez/(q -1- 1), 

D(E) = H~(X') - -  1og(2"/E"V0 

Hq/(q+a)(X)- log(2~q,/el~vl) 

= D(ez/(q -? 1)) + n log[(q + 1)/q] 

By (9), we have 

D(e) ~ D(e~) § n log[(q + 1)/q], ez/q ~ e > el/(q + 1) 

Hence, by (10), 

lira sup D(E) ~< D(e0 ~ lira inf D(e) ~- 3 
e-+O e --~.-0 

Letting 3 -~ O, we see that D(e) has a limit as e -~ O. 
Let 

C(S) = lira D(e) 
E--~O 

and define 

D(e/q) <~ D(E) (9) 

This inequality shows first that D(E) < ~ for all e > 0. Now for 3 > 0, choose 

(10) 

(11) 

g2(e) = D(e) -- C(S) 

Then g2(0 +) ~ 0, and Eq. (6) follows by definition for L ---- 1, if { Vi} is an c-partition 
of entropy H,(X). 

To show (6) for L ~/: 1, let { Wj} be an e l l  partition of the unit cube with entropy 
H,/L(X). Then 

m(Wj) log[1/m(Wj)] = log(Z'~L"/e~vl) § C(S) § g~(e/L) 

Take Vj = L W j .  Then {Vj} is an c-partition of the cube (4). Since 

m(V~) = L"m(Wr 



62 Edward C. Posner and Eugene R. Rodemich 

we have 

1 F - -  1 
- -  L " [ ~  m ( U s ) l o g  

= L"[log(2•/e"vl) + C(S) + gz(e/L)], 
which is (6). 

To show (5), it is similarly sufficient to take L = 1. Accordingly, let {U~-} and J 
be as stated in the hypotheses, and L = 1. Define 

1 2 '~ 
= min m<) Ogm<) 

j~l 6nu1 

where the inf is taken over all c-partitions U of E ~. Then (5) is satisfied. We only 
need to show that gz(0 +) = 0. 

Suppose that c < �89 Then all the points of the cube 

c < x~ < 1 -- E, k = 1,...,n (13) 

have distance at least E from the boundary of the unit cube, and { Uj, j ~ J} cover (13). 
Let b be the point with coordinates (1, �89 ..... �89 and 

! 

Y~ - I ~ [Uj  - -  b] + b 

Then {Yj , j  E J} cover the unit cube. Let Z~ be the restriction of  Yj to this cube. 
As we have seen above, the right side of (6) is the c-entropy of X, for L = t. The 
sets Z~ have diameters ~ c / ( 1  - -  2c) .  Hence 

Z re(Z,)log m~Zj) ~ log ( 2~(1 -- 2E)" _) § C(S)+ &[E/(1 --  2e)] (14) 
j CnVl 

Again, for e < %, depending only on S, each of the sets Y~ has measure less than l/e. 
Since the function t log (l/ t)  is increasing on the interval (0, l/e), we then have 

1 1 

(1 
Y L ,,tkwj) 

~ 1  2E)] < 0 - 2c)-~ [Z m(V~) log  + ~ l o g 0  - 

Combining this inequality with (14), we obtain 

1 2 ~ 
~. m(Uj) log m(Us) log - -  -- C(S) j 6nu1 

>~ [(1 2E) - 1] [log 2 ~ ] 
- -  - -  e"v--~- + C ( S )  + n log(1  - -  2e)]  

-{- (1 -- 2E) n gl[E/(1 - -  2~)1 

= ga(e) 
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This function ga(e) approaches zero as e -+ 0. By (12), 

0 >~ g~(e) >~ min[0, g3(e)] 

Hence 

63 

To prove that C(S) is continuous in the Hausdorff metric, we start with the 
following observation: Let S be a fixed compact convex set with nonempty interior, 
symmetric about the origin. Then for any 3 > 0, there is an c~ > 0 such that 

p(S,S') < ~ ~ (1 + 3 ) - 1 S C S ' C  (1 + 3)S (15) 

for any convex set S' of this type. 
Suppose p(S, S') < ~. Then by (15), any c-partition in the S (or S') metric is a 

(1 + 3) �9 c-partition in the S' (or S) metric. We use again the fact that the right side 
of (6), for L = 1, is H,(X). Denote this space in the S' metric by X'. Then, in an 
obvious notation, 

H,(X) = log[2"/e'~vl(S)] + C(S) + g~(e, S) 

and since the c-partition which has this entropy is a (1 + 3) �9 e-partition of X', 

H,(X) >~ H,~z+~,(X') = log[2"/e'~(1 + 3)"v1(S')] q- C(S') + gl[e(1 + 3), S'] 

Applying the formula for H,(X), we get 

[ Ul(S' ) 
(1 I-- 3) ~] -- gl[e(1 -1- 3), S'] q- ga(e, S) c ( s ' )  - c ( s )  log t 

Now let e--+ 0. We have 

[ /)l(S') (I + C(S') -- C(S) <~ log L vz(S) 

Since S' C (1 + 3)S, Vl(S') <~ (1 + 3)'~v~(S). Hence 

C(S') -- C(S) <~ 2n log(1 + 3) 

The same argument applies with S and S' interchanged. Therefore 

p(S, S') < a ~ ] C(S') -- C(S)J <~ 2n log(1 q- 3) 

This states the continuity of C(S) in the Hausdorff metric. 
We now consider the problem of when C(S) can be 0. If translates of S tile E ~, 

then the unit cube can be covered by translates of  �89 with disjoint interiors, for 
arbitrarily small e. Let W = { W~} be such a covering, and W* = { Wj*} its restriction 
to the unit cube. Counting only sets of W which intersect the unit cube, these lie in a 
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cube of  side 1 + 4eK, where K is the largest value of  any coordinate  in the unit 
sphere II x l]s ~< 1. Hence 

0 <~ D(�9 <~ ~ m(Wj*) log[l/m(Wj*)l -- log(2~/�9 

<~ ~ m(Wj) log[1/m(W~)] -- log(2n/�9 

~< [(1 + 4 �9  ~ - -  I] log(2"/E"v~) 

for  E~vl < 1/e. Tak ing  the limit as e --~ 0, C(S) = O. 
Now suppose C(S) = 0. Then, for  L = 1 and given �9 we have for  the part i t ion 

V of  (6) 

log(2"/�9 <~ ~ m(Vj) log[1/m(Vj)l 

= log(Z"/e"vl) -t- g2(�9 

Given 8 > 0, let K be the set of  indices j for  which m(Vj) < (1 + 8)-a2-"e~v~. Then 

m(Vj) log(1 § 8) ~ g2(e) (16) 
K 

Let  E = I/q, q a positive integer, and part i t ion the cube (4) into q'~ cubes Cz, 
1 ~< l ~< q~, o f  side 1/q. Let  Vj., = V~ (~ C , .  Then f rom (16), 

Hence there is an index 1 = r for  which 

m(Vj,r) <~ q-~g2(!/q)/log(1 + 8) 
K 

(17) 

Suppose that  C,. is the cube 

a~ < x~ < a~ + 1/q, k = 1,..., n 

Denote  its vertex (al ..... a,~) by a.  Let 

~U (~) = {W~ q) = {q(Vj -- a)/V~ ~ r j ~ K} 

The sets o f  ;r have diameter  ~<1 and measures ~>(1 -t- 8)-12-nvz �9 By (17), the par t  
o f  the unit  cube not  covered by r has measure  at mos t  g~(1/q)/log(1 + 8). 

Let  r consist o f  the closures of  the sets o f ~  (~) which intersect the unit  cube. 
F r o m  the lower bound  on the measures  of  these sets and the bound  on their diameters,  
the number  of  sets in ~/g/'(~)* is bounded,  independent  of  q. Hence there is a number  m 
and a sequence {q~} o f  values of  q for  which "#/'(q>* contains m sets: 

~ , j  = 1 , . . . , m }  
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where the sets are indexed in any order. Since the compact subsets of E ~ form a locally 
compact space in the Hausdorff metric, there is a subsequence T of {q~} such that 

Wj = p-lim W~ O~ 
q~T 

exists f o r j  = 1,..., m. It is easily shown that the W~. are sets with diameters ~ l  and 
measures ~(1 + 3)-z2-~v~, the Wj have disjoint interiors, and the part of the cube 
not covered by {W~} has measure 0 = lira g2(1/q)/log(1 -k 8). 

Thus, for each ~ > 0, there is such a collection $r = { Wj} of closed sets 
which covers the unit cube. By taking the limit on a sequence 8 5 --~ 0, we get a covering 
of the unit cube by closed sets with diameters ~<1, measures >~2-~v~, and disjoint 
interiors. These sets must be translates of �89 Hence the unit cube is tiled by translates 
of �89 

Similarly, starting with any L > 0, we get a tiling of the cube (4) by translates of �89 
Translate (4) and its tiling to the position with the origin centered in the cube and 
multiply all coordinates by 2. Then, as L - +  0% we have a sequence of  expanding 
cubes whose union is E ~, each tiled by translates of S. Again taking the limit appro- 
priately, we get a tiling of E '~ by translates of S. This completes the proof  that C(S) = 0 
if and only if such a tiling exists. 

To prove that C(S) ~< 1, we use Sec. 6 of Reference 2. Let fiv~ be the minimum 
measure of the 2 ~ pieces into which S is cut by the coordinates hyperplanes. Then 
for small E, if S,/~(x) denotes the translate of �89 centered at x, interested with X, 
we have 

m(S,/~(x) > 132-~e~v~ , x E X, 

while 

m(S,/2(x)) =- 2-'~envl 

except on a subset of X near the boundary of measure O(0. The above-cited reference 
yields 

1 dm H,(X) ~ f log m[S,/2(x)] 

1 dm][fl--mtSo/2(x)] din] 08) 
+ [ f  log 1 -- m[S,/2(x)] m[S,/2(x)] 

so that 

2" e'~vl 1 2~ 
t, + 1 + + + ] 

= log E--~-v~ + 1 + O 

Then from the definition (7), we find 

D(0  4 1  q- O ( ,  l o g ! )  (19) 

8zz/z/z-5 
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From (11) we find 
c(s) <~ 1 

as required. This completes the proof  of  Theorem 1. 

(20) 

Remark. The so-called "deterministic case" of (7) defines a D'(r as 

D'(e) = HE'(X) -- 1og(2"/envl) 

where H~'(X) is the epsilon entropy of the compact metric space X, that is, the 
minimum of the logarithm of the number of sets in an e-covering of all of  X. We 
can prove in the same way that 

lim D'(e) = C'(S) 
e-M) 

the deterministic packing constant of S, exists. Also, oo > C'(S)>/C(S), and 
C'(S) = 0 if and only if translates of  S tile E ". However, it is not true that C(S) is 
uniformly bounded in n. In fact, Theorem 3.2 of Reference 6 shows in effect that 

C'(S) <~ [1 + o(1)] log n 

and, for S the n-ball (Theorem 8.1 of Reference 6), 

C'(S) >~ [1 - -  o(1)] log n 

Thus, C'(S) can be arbitrarily large, even though C(S) ~< i. What  this means is that 
compact convex symmetric sets in E ~ with nonempty interior pack vastly better if 
one is allowed to weight sets according to their measure instead of counting how 
many are necessary. For  the n-ball of radius e/2, a lot of pieces of  very small measure 
must be used to partition the unit n-cube; if one did not have to cover everything, but 
only most of the cube, a lot fewer sets would be needed. The difference 

C'(S)- C(S) 

is a measure of the extra packing difficulty one has in packing S when the sizes of the 
additional pieces cannot be taken into account. 

3. I N T R O D U C T I O N  OF DIFFERENTIAL E N T R O P Y  

We call a function f(x) defined on E~ strongly integrable i f f e  LI(E~), and its 
integral is approximated by Riemann-type sums over partitions of  E~ of small mesh:, 
f(x) is strongly integrable if for any ~ > 0 there is a 3 > 0 stich that if U = {Uj} 
is any 8-partition of En,  

fE f (x  ) dm(x) -- ~ m(U~) f(~j) < ~7 (21) 

where {~:j} is any sequence of points with ~:j ~ Uj. This condition is satisfied, for 
example, i f f (x)  is Riemann-integrable over any bounded region in E~,  andf (x )  --~ 0 
rapidly at infinity. 
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We say that f (x)  is strongly integrable of order a if there is a constant A such that 
(21) is true for all sufficiently small 8, if ~/ = A3% This condition is satisfied, for 
example, if f (x) satisfies an inequality of the form 

If(x) -- f(x')[ < BI x -- x' U" g(x), B > 0 

where g(x) is a strongly integrable function. 
Define the differential entropy H(p) of a probability density function p on E '~ 

as the possibly negative infinite integral 

H(p) = f p log(l/p) dm 

Using this concept, the following theorem can be stated and proved. 

T h e o r e m  2. Let X = {(X I , . . . ,  Xn)  } be a real normed linear space of dimension 
n arising from a compact convex symmetric set S with nonempty interior, together 
with a Borel probability distribution/~ with a density p(x). I fp(x)  is continuous and 
there is an c~ > 0 such that p(x) and p(x) log[lip(x)] are strongly integrable of order ~, 
then 

H~(X) = n log(2/e) + g(p) -k- log(l/v0 + C(S) + o(1) (22) 

as E--+ 0, where va is the Lebesgue measure of S, and C(S) is the entropic packing 
constant of S. 

Proof. Let U = {Us} be any e-partition of 2". We have 

H(U) ---- ~/x(Uj) log[1//z(Us)] 

= ~ m(Us) p(~:j) log[1/m(Uj)p(~) ] 

= ~ m(Uj)p(~j) log[1/p(~j)] + ~, p(~) m(Uj) log[1/m(U~)] 

--= HI(U) -t- H~(U), say, 

where ~j is the point of Us at which p(x) takes its average value in U s . By hypothesis, 
there is a constant A1 such that 

1 H I ( U )  - -  H ( p ) l  "~ A1 e e~ (23)  

Take 3 = ,v/~, and partition X into coordinate cubes of side ~ by the hyperplanes 
xk = j 3 ,  --oo < j  < Go, k = 1,..., n. For e sufficiently small, all the terms in the 
series for Hz(U) are nonnegative. Let the cubes of side ~ be {K~}: 

1 
H2(U) >~ Z Z P(~J) m(Uj) log (24) 

r v~cK, m(Uj) 

Let ~ be the minimum value ofp(x)  in K~. Then by Eq. (5) of Theorem 1, 

Ha(U) >~ Z P~ 3n[log(2'~/E'~Vx) + C(S) + gz(~-gE)] (25) 
r 



68 Edward C. Posner and Eugene R. Rodemich 

By hypothesis, there is a constant A2 such that 

p~,8 ~ -  1 < A2E~/~ 

The expression in brackets in (25) is o(c~/~) as E ~ 0. Hence 

H2(U) >~ log(Z~/e"v~) -{- C(S) -? gz*(E) (26) 

where gl*(E) --+ 0 as e --+ 0. 
For a special choice of U, take the partition of Theorem 1 (with L = 3), together 

with its translation into all the other cubes of {K~}. Then equality holds in (24), and 
instead of (25) we have 

H~(U) ~ ~p,,* 8u[1og(2n/EnVl) -~- C(S) -~ g2(~/7)] 
r 

ifp~* is the maximum ofp(x) in K , .  This leads as above to 

where gz*(0 +) = 0. 
By (23) and (26), 

He(U) ~ log(2"/~vz) + C(S) + g2*(e) 

H,(X) >~ n log(2/~) + H(p) + log(i/v1) -~- C(S) -~- gz*(E) -- Ax~ ~ 

Using the special partition for which (27) holds, we get 

H~(X) ~ n log(2/e) + H(p) + log(I/v1) -l- C(S) + gz(e) + Aae ~ 

(27) 

Hence (22) is true. Theorem 2 is proved. 
What Theorem 2 means is that the differential entropy H(p) for a nice densityp is, 

except for a term approaching 0 with E, the difference between the E-entropy (of the 
space with metric obtained from II "'" lls and probability from p) and the logarithm 
of the reciprocal of the volume of the sphere of diameter E in the norm, less a term 
C(S) that measures how badly S fails to close-pack all of n-space. For S the unit 
cube, H(p) is just the difference of the epsilon entropy of the space and the logarithm 
of the reciprocal of the volume of a sphere of diameter e in that norm (the so-called 
sup norm or L~ norm). This is one explanation of the term "differential entropy." 

Counterexample. The condition thatp  be continuous and strongly integrable 
over E~ cannot be relaxed. To show this, let {p~} be the sequence given by 

where 

C 
Pi---- i log2( i+  1) ' 

c_Z= ~ 1 
4=1 i logS(/+ 1) 
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Let p be the indicator function o f  the set A, where A is the union of  the intervals 
[i, i § Pi], i >~ 1. Then p log(l/p) is identically zero, a for t ior i  strongly integrable 
of  order 1. And  yet H~(X) is infinite for E > 0. This example can be modified so that  
p is continuous but  not  strongly integrable, keeping the strong integrability o f  
p log(l/p). 
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